- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000100000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Jiralerspong, Thomas (1)
-
Lajoie, Guillaume (1)
-
Mazzucato, Luca (1)
-
Payeur, Alexandre (1)
-
Perich, Matthew G (1)
-
Ryoo, Avery Hee-Woon (1)
-
Williams, Ezekiel (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Landmark universal function approximation results for neural networks with trained weights and biases provided the impetus for the ubiquitous use of neural networks as learning models in neuroscience and Artificial Intelligence (AI). Recent work has extended these results to networks in which a smaller subset of weights (e.g., output weights) are tuned, leaving other parameters random. However, it remains an open question whether universal approximation holds when only biases are learned, despite evidence from neuroscience and AI that biases significantly shape neural responses. The current paper answers this question. We provide theoretical and numerical evidence demonstrating that feedforward neural networks with fixed random weights can approximate any continuous function on compact sets. We further show an analogous result for the approximation of dynamical systems with recurrent neural networks. Our findings are relevant to neuroscience, where they demonstrate the potential for behaviourally relevant changes in dynamics without modifying synaptic weights, as well as for AI, where they shed light on recent fine-tuning methods for large language models, like bias and prefix-based approaches.more » « lessFree, publicly-accessible full text available January 22, 2026
An official website of the United States government
